

## WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 1st Semester Examination, 2021-22

# PHSACOR01T-PHYSICS (CC1)

# MATHEMATICAL PHYSICS-I

Time Allotted: 2 Hours

Full Marks: 40

 $2 \times 10 = 20$ 

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

### Question No. 1 is compulsory and answer any two from the rest

- 1. Answer any *ten* questions from the following:
  - (a) Sketch:  $f(\theta) = \sin \theta \cos \theta$  for  $0 \le \theta \le 4\pi$ .
  - (b) If  $\vec{r}$  be the position vector of a point on a closed contour, prove that the line integral  $\oint \vec{r} \cdot d\vec{r} = 0$ .
  - (c) If  $\vec{A}$  and  $\vec{B}$  are irrotational then prove that  $\vec{A} \times \vec{B}$  is solenoidal.
  - (d) Find the Taylor series of the function  $f(x) = \frac{1}{x^2 + 4}$  about the point x = 0.
  - (e) State the Uniqueness theorem of the solution of a differential equation for initial value problems.
  - (f) Find the volume of the parallelepiped whose edges are represented by  $\vec{A} = 2\hat{i} 3\hat{j} + 4\hat{k}$ ,  $\vec{B} = \hat{i} + 2\hat{j} \hat{k}$  and  $\vec{C} = 3\hat{i} \hat{j} + 2\hat{k}$ .
  - (g) The position vector of a particle is  $\vec{r}(t) = \cos(\omega t)\hat{i} + \sin(\omega t)\hat{j}$ , where  $\omega$  is a constant. Prove that, at every instant, its velocity and acceleration are perpendicular to each other.
  - (h) Find the directional derivative of the scalar field  $\phi(x, y, z) = 2x^2 + yz$  in the direction of the vector  $\hat{i} + \hat{j}$  at the point (0, 1, -1).
  - (i) Find the value of k so that the average value of the function

$$f(t) = \frac{3t^2}{8} + kt$$
 in the range  $0 \le t \le 2$  vanishes.

- (j) A particle moves along a curve,  $x = 2t^2$ ,  $y = t^2 4t$  and z = 3t 5 where "t" is time. Find its component velocity at time t = 1 in the direction of vector  $(\hat{t} 2\hat{j} + 2\hat{k})$ .
- (k) Solve the following differential equation.
- $ye^{y}dx = (y^{3} + 2xe^{y}) dy$ . (1) Show that,  $\vec{\nabla} \times \left(\frac{\vec{r}}{r^{2}}\right) = 0$ .

#### CBCS/B.Sc./Hons./1st Sem./PHSACOR01T/2021-22

- (m) In a normal distribution, 31% of items are under 45 and 8% are over 64. Find the mean and the standard deviation of the distribution.
- (n) An integer is chosen at random from the first 200 positive integers. What is the probability that the integer chosen is divisible by 6 or 8?
- 2. (a) Evaluate  $\iint_{R} x(y-1) dx dy$ , where R is the region bounded by the parabola 3+3+4 $y=1-x^2$  and y=0.
  - (b) Prove that for a scalar field  $\phi$ ,

$$\oint_{\mathrm{S}} \phi \, d\vec{S} = \int_{\mathrm{V}} (\vec{\nabla} \phi) \, dV \,,$$

where V is the volume bounded by the closed surface S.

- (c) Solve:  $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = 2\sin(4x)$ .
- 3. (a) State Green's theorem in a plane.
  - (b) Verify Gauss' divergence theorem for the vector field  $\vec{F} = 4y\hat{i} 2x\hat{j} + z^2\hat{k}$ , where *V* is the volume bounded by the upper half surface of the sphere  $x^2 + y^2 + z^2 = 1$ together with the plane z = 0.
  - (c) State the condition of convergence of a Taylor series expansion. Find interval of x for which the Taylor series of  $\ln(1+x)$  about x = 0, converges.

4. (a) If 
$$r = \sqrt{x^2 + y^2}$$
 and  $z = \phi(r)$ , show that  $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{1}{r}\phi'(r) + \phi''(r)$ . (2+2)+3+3

1+5+(1+3)

- (b) Show that the rectangular solid of maximum volume that can be inscribed in a sphere is a cube.
- (c) If  $\vec{A} = (y-2x)\hat{i} + (3x+2y)\hat{j}$ , compute the circulation of  $\vec{A}$  about a circle C in the XY plane with center at the origin and radius 2, if C is traversed in the positive direction.
- 5. (a) Find the area of the ellipse described by  $x = a \cos \theta$ ,  $y = b \sin \theta$ . 3+3+1+3
  - (b) Prove  $\vec{\nabla} \cdot \left(\frac{\vec{r}}{r^3}\right) = 0$ , where  $\vec{r} \neq 0$  is the position vector.
  - (c) What is meant by probability distribution function?
  - (d) A box *A* contains 2 white and 4 black balls. Another box *B* contains 5 white and 7 black balls. A ball is transferred from the box *A* to the box *B*. Then a ball is drawn from the box *B*. Find the probability that the drawn ball is white.
    - **N.B.**: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

\_\_\_\_X\_\_\_\_