

PHSADSE03T-PHYSICS (DSE1/2)

NUCLEAR AND PARTICLE PHYSICS

Time Allotted: 2 Hours

Full Marks: 50

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

Question No. 1 is compulsory and answer any two from the rest

1. Answer any *fifteen* questions from the following:

 $2 \times 15 = 30$

- (a) What is mirror nuclei? Give example.
- (b) 2He⁴ nucleus has no magnetic moment. Explain.
- (c) Determine the radii of a ¹⁶O nucleus, given $r_0 = 1.2$ fm
- (d) State Geiger-Nuttall law.
- (e) Find the Q-value of the reaction ${}^{14}_{7}N(\alpha, p){}^{17}_{8}O$ Take mass of ${}^{4}He = 4.0026 \text{ u}$, ${}^{14}N = 14.0031 \text{ u}$, ${}^{1}H = 1.0078 \text{ u}$, ${}^{17}O = 16.9994$ and 1 u = 931 Mev.
- (f) A muon is not a meson. Explain.
- (g) Calculate the minimum speed of a charged particle for emission of Cerenkov radiation in a medium of refractive index 1.5.
- (h) What are the differences between Compound nuclear reaction and direct reaction?
- (i) What is strangeness of an elementary particle?
- (j) How does interaction of γ -ray in matter differ from interaction of charged particles?
- (k) What are packing fraction and binding energy fraction?
- (1) What are the quark contents of proton and neutron?
- (m) What is straggling of range of α -particle?
- (n) An ultra-relativistic proton moves in a magnetic field. Can it radiate π^+ , π^- and π^0 mesons, electrons and positrons?
- (o) Why the following reactions are not found in nature?
 - (i) $e^- \rightarrow e^- + \gamma$ in vacuum
 - (ii) $K^+ \rightarrow \pi^+ + \gamma$ in vacuum
- (p) Can photoelectric emission take place with free electron? Explain.
- (q) Give example of two hyperons. What is hyper nucleus?
- (r) Define parity of a nucleus.
- (s) What is resonant reaction?
- (t) Why neutron show magnetic moment though it lacks charge?

2.	(a)	1 g of ²²⁶ Ra has an activity of 1 curie. Calculate the mean life and half life of Radium.	3
	(b)	What are the problems to explain continuous β -decay spectrum? How they were solved?	3
	(c)	Why U^{235} is fissile with slow neutrons but U^{238} requires fast neutrons for fission process?	4
3.	(a)	Why spin-orbit coupling is necessary in Shell model to reproduce magic numbers?	3
	(b)	What are the spin-parity (J^{π}) of ${}_{4}Be^{11}$ in its ground state?	1
	(c)	What are the basic assumptions behind Fermi gas model of the nucleus?	2
	(d)	Calculate the threshold energy for the nuclear reaction ${}^{14}N(n,\alpha){}^{11}B$ in MeV. Use the following data:	4
		Mass of ${}^{14}N(14.007550 u)$, mass of n (1.008987 u), mass of α (4.003879 u),	
		mass of ${}^{11}B(11.012811u)$.	
4.	(a)	Explain how the Wave theory failed to explain photoelectric effect and Compton effect.	2
	(b)	What are the major interaction processes by which energized electron loses energy within matter? Explain them.	4
	(c)	How fast neutrons interact with matter?	2
	(d)	Why $e^ e^+$ pair production cannot occur in vacuum?	2
5.	(a)	What is meant by SU(3) symmetry of strong interaction? How is this broken?	4
	(b)	Write CPT conservation law.	2
	(c)	The isospin, baryon number and strangeness of a particle are given by $I = 0$, $B = +1$ and $S = -3$, respectively. Find the electric charge of the particle.	2
	(d)	Identify the type of the reaction	2
		(i) $\mu^- \rightarrow e^- + \nu + \overline{\nu}$	

- (ii) $\Sigma^{\circ} \rightarrow \Lambda^{\circ} + \Lambda$
- **N.B.**: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

—×—