

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours/Programme 3rd Semester Examination, 2021-22

STSHGEC03T/STSGCOR03T-STATISTICS (GE3/DSC3)

BASICS OF STATISTICAL INFERENCE

Time Allotted: 2 Hours

Full Marks: 40

5

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

GROUP-A

Answer any <i>four</i> questions from the following	$5 \times 4 = 20$
---	-------------------

- 1. Define consistent estimator. If X_1, X_2, \dots, X_n are random observations on a 2+3 variable X taking the value 1 with probability θ and the value 0 with probability $(1-\theta)$, then show that sample mean is a consistent estimator of θ .
- 2. What are the basic principles of design of experiments?
- 3. (a) If X_1, X_2, \dots, X_k are k independent random variables distributed normally with 2+3 mean 0 and variance 1, what is the distribution of $\sum_{i=1}^{n} X_i^2 (i = 1, 2, \dots, k)$?
 - (b) Explain why we call t, χ^2 and F as sampling distributions.

4.	Write down the mathematical model, hypotheses and ANOVA table for randomized block design.	5
5.	Discuss two applications of chi-square test.	5
6.	Write down short note on:(i) level of significance(ii) concept of <i>p</i>-value	5

7. If X be a binomial variable with parameters n (known) and p (unknown), find 5 unbiased estimators of p^2 and p(1-p).

8. In a Bernoulli distribution with parameter *p*, testing $H_0: P = \frac{1}{2}$ against $H_1: p = \frac{2}{3}$ is rejected if more than 3 heads are obtained out of 5 throws of a coin. Find the probabilities of Type I and Type II errors.

5

GROUP-B

		Answer any two questions from the following	$10 \times 2 = 20$
9.	(a)	Define mean square error and bias of an estimator. When is an estimator called minimum variance unbiased estimator?	5+3+2
	(b)	For a random sample of size <i>n</i> from a Normal (μ, σ^2) population, show that the sample mean \overline{X} is an unbiased estimator for μ .	
	(c)	A value of the sample mean \overline{X} calculated from 100 observations is better than that calculated from 10 observations. Discuss.	
10		Describe sign test for testing the location of a population, stating all the assumptions made.	10
11		Describe the analysis of variance technique for one-way classified data under fixed effects model.	10
12		Describe a test procedure for testing $H_0: \sigma = \sigma_0$ against all alternatives for a normal (μ, σ^2) population. State the difference between the two cases μ known and unknown. Also obtain a $100(1-\alpha)\%$ confidence interval for σ^2 when μ is known.	5+3+2

N.B.: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

—×—